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Построен приближенный метод решения нестационарных нелинейных уравне-
ний Навье –Стокса течения вязкой несжимаемой жидкости в области с входящим
углом. В зависимости от входных данных и геометрии области экспериментально
определена область оптимальных параметров в переменных 𝜈 и 𝜈* в зависимости
от расстояния 𝛿 до точки сингулярности. Параметры 𝜈 и 𝛿 входят в определе-
ние 𝑅𝜈-обобщенного решения задачи, а 𝜈* определяет степень весовой функции
в предложенном методе конечных элементов. Для дискретизации задачи по вре-
мени использованы методы Рунге –Кутты первого и второго порядков.
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Введение

Эффективное численное решение задач, описывающих течение вязкой несжимаемой
жидкости, представляет особый интерес для исследователей и инженеров. Существует
несколько причин, по которым дискретизация таких задач методом конечных элементов
(МКЭ) может столкнуться со значительными трудностями. Одна из них — наличие уг-
ловых сингулярностей и пограничных слоев в решении. В настоящей работе изучаются
нестационарные уравнения Навье –Стокса в вихревой форме в двумерном многоуголь-
нике с входящим углом на его границе. Предложен численный метод решения задачи,
основанный на применении схем Рунге –Кутты как первого, так и второго порядков
по времени. Обратим внимание, что решение задачи имеет особенность в окрестности
входящего угла 𝜔, 𝜔 ∈ (𝜋, 2𝜋), даже если входные данные задачи обладают достаточной
гладкостью. Двумерное течение вязкой несжимаемой жидкости в невыпуклой области
впервые изучалось в [1]. Хорошо известно, что слабое решение задачи (в каждый мо-
мент времени): компоненты поля скорости и давление в невыпуклой многоугольной
области Ω — не принадлежат пространствам Соболева 𝑊 2

2 (Ω) и 𝑊 1
2 (Ω) соответствен-

но [2]. Приближенное решение, полученное с использованием стандартных конечно-
разностных схем и схем конечных элементов, сходится к точному решению задачи со
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скоростью, не превышающей𝒪(ℎ𝛼), 𝛼 < 1, в норме пространства𝑊 1
2 (Ω) (для компонент

поля скорости). Такое уменьшение скорости сходимости от 1 до 𝛼 называется эффек-
том загрязнения, который наблюдается не только в норме классического пространства
Соболева, но и в норме весового пространства [3].

Существует множество современных подходов к нахождению приближенного ре-
шения задач течения вязкой жидкости, например модификации неконформных МКЭ,
такие как метод виртуальных элементов (VE-метод) и разрывный метод Галёркина
(DG-метод). Первый из них, VE-метод, предложен в [4]. Другой подход основан на
идеях миметического метода конечных разностей [5] и использует дискретизацию ме-
тода Галёркина. Подход решает задачу построения базисных функций на произвольных
элементах, в том числе невыпуклых, избегая явного представления базисных функций
и используя для них квадратурные формулы.

Пространство VE-метода устроено следующим образом: основные функции класси-
ческого полиномиального пространства необходимо дополнить подходящими неполино-
миальными функциями [6]. Полиномиальное подпространство элементов виртуального
пространства обеспечивает условия согласования билинейных форм, а неполиномиаль-
ное подпространство обеспечивает устойчивость метода за счет определения правиль-
ных проекций [7, 8].

Для DG-метода определена постановка задачи в сверхслабой форме, может приме-
няться в областях со сложной геометрией и обладает лишь локальными свойствами со-
хранения и устойчивости решения. Локальный DG-метод обладает гибкостью в выборе
пространств для компонент поля скорости и давления [9]. В частности, для задач с уг-
ловой особенностью используется сгущение сетки в окрестности входящего угла [10–13].

Отметим также другие подходы к решению задач о движении жидкости в облас-
тях с входящим углом на границе. Первый из них основан на дополнении пространств
конечных элементов сингулярными компонентами [14], второй подход [15] — на опреде-
лении двойственных функций к сингулярным компонентам решений в сочетании с вве-
дением дополнительных уравнений в вариационную постановку задачи. Третий метод,
предложенный в [16], основан на разбиении расчетной области на непересекающиеся
подобласти, не содержащие входящих углов. При этом узлы сетки не обязаны совпадать
на общей границе соседних подобластей. Численная реализация подхода предполагает
увеличение размерности дискретного пространства сингулярных компонент. Четвертый
подход [17] предполагает выбор нескольких окрестностей входящего угла и изменение
в них матрицы жесткости системы. При определенном их выборе, в зависимости от
величины входящего угла, достигается требуемая скорость сходимости. Пятый подход
основан на выборе сингулярных и регулярных компонент решения [18]. Рассчитанные
коэффициенты интенсивности напряжений позволяют определить регулярные состав-
ляющие решения.

Нами разработан принципиально другой подход. В работе на каждом временно́м
шаге определяем 𝑅𝜈-обобщенное решение в несимметричной вариационной постановке
задачи. В работе [19] (см. также [20]) установлены его существование и единственность
в множествах весовых пространств Соболева. В [19] получена оценка, связанная с со-
хранением энергетического баланса аппроксимационного поля скоростей для неявной
по времени схемы Кранка –Николсон (первого порядка). Впервые определять решение
как 𝑅𝜈-обобщенное предложено в [21] для эллиптических задач. На основе определения
𝑅𝜈-обобщенного решения построена теория численных методов. Такой подход позволил
ввести весовое пространство или множество в зависимости от геометрии области и вход-
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ных данных (правые части, коэффициенты уравнений, граничные и начальные данные)
задачи, которым 𝑅𝜈-обобщенное решение принадлежит. Для задач эллиптического ти-
па доказаны единственность решения и его дифференциальные свойства (см., напри-
мер, [22]). Для решения задачи типа Стокса в [23] установлен весовой аналог условия
Ладыженской –Бабушки –Брецци. Для приближенного решения эллиптических задач
и задач гидродинамики разработан весовой узловой метод конечных элементов (см., на-
пример, [24–26]), а для численного решения уравнений Максвелла — весовой реберный
метод конечных элементов [27]. Для эллиптических задач получены априорные оцен-
ки скорости сходимости приближенного решения к точному решению задачи по норме
весовых пространств [28]. Оптимальная скорость сходимости достигается без использо-
вания сгущения сетки в окрестности точки сингулярности. Для метода со сгущением
сетки хорошо известна теоретическая оценка скорости сходимости, она равна 𝒪(ℎ), но
при исходной сетке с шагом порядка 5·10−4 ее последующее сгущение в окрестности
точки сингулярности должно иметь еще меньший шаг. Метод перестает работать кор-
ректно, другими словами, на практике порядок сходимости приближенного решения
к точному решению задачи уменьшается, в отличие от предложенного подхода [29].

В представленной работе построен и реализован численный метод решения нестаци-
онарной задачи гидродинамики с угловой сингулярностью. Проведена серия численных
экспериментов модельных задач в областях с различным входящим углом на грани-
це. Результаты показали, что приближенное 𝑅𝜈-обобщенное решение (поле скорости)
в каждый момент времени сходится к точному решению со скоростью 𝒪(ℎ) в норме
пространства 𝑊 1

2,𝜈(Ω). Скорость сходимости не зависит от величины входящего угла,
что существенно выше, чем при использовании классических конечно-элементных и ко-
нечно-разностных подходов по порядку, относительно шага сетки ℎ (см., например, [30]).
Это достигается правильным выбором степеней 𝜈* и 𝜇* весовых функций метода ко-
нечных элементов в сочетании с оптимальными значениями 𝜈 и 𝛿 в несимметричной
вариационной постановке задачи. Определены области выбора оптимальных парамет-
ров метода в областях с различными входящими углами. Предложенный метод прост
в реализации и позволяет инженерам с хорошей точностью рассчитывать течение жид-
кости в окрестности входящих углов на границе области.

1. Постановка задачи

Рассмотрим течение вязкой несжимаемой жидкости в двумерной невыпуклой много-
угольной области Ω с входящим углом 𝜔 на границе 𝜕Ω с вершиной в начале координат
𝒪 = (0, 0). Пусть x = (𝑥1, 𝑥2) — элемент из 𝑅2, 𝑡 — элемент по времени x ∈ Ω, 𝑡 ∈ (0, 𝑇 )
и 𝑄 = Ω×(0, 𝑇 ). Пусть известны векторные поля u0 = u0(x) в Ω, f= f(x, 𝑡)={𝑓𝑖(x, 𝑡)}2𝑖=1

в 𝑄 и g= g(x, 𝑡) = {𝑔𝑖(x, 𝑡)}2𝑖=1 в 𝑄 такие, что

∫︁
Ω

divg𝑑x=0 в каждый момент времени

𝑡 ∈ (0, 𝑇 ). Требуется найти векторное поле скоростей u = u(x, 𝑡) = {𝑢𝑖(x, 𝑡)}2𝑖=1 и ска-
лярное поле давления 𝑃 = 𝑃 (x, 𝑡) такие, что выполняются следующие тождества:

𝜕u

𝜕𝑡
−∆u+ rotu× u+ grad𝑃 = f , divu = 0 в 𝑄, (1)

u(x, 0) = u0 в Ω, u = g на 𝜕Ω× (0, 𝑇 ). (2)

Для дискретизации задачи (1), (2) по времени используем схемы Рунге –Кутты как
первого, так и второго порядков. Сначала введем обозначения: v𝑛 = v𝑛(x) для ап-
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проксимации вектор-функции v(x, 𝑛∆𝑡), 𝑛 = 0, 1, 2, . . . , 𝑁 , и v𝑛+𝛾 — вектор-функции
v(x, (𝑛+ 𝛾)∆𝑡), 𝛾 ∈ (0, 1), 𝑛 = 0, 1, 2, . . . , 𝑁 − 1. Параметр ∆𝑡 таков, что 𝑇 = 𝑁∆𝑡. Кро-
ме того, пусть v−1 := v0 и v̄𝑛+1 := 0.5(v𝑛+1+v𝑛). Пусть U𝑛 — подходящее приближение
к u в момент времени 𝑛∆𝑡.

Схема первого порядка (схема Кранка –Николсон). Пусть заданы u𝑛,

U𝑛 := 3/2u𝑛 − 1/2u𝑛−1, 𝑃 𝑛, f̄
𝑛+1

и g𝑛+1. Найти u𝑛+1 и 𝑃 𝑛+1 как решения системы
уравнений

(∆𝑡)−1u𝑛+1 −∆ū𝑛+1 + rotU𝑛 × ū𝑛+1 + grad𝑃 𝑛+1 = f̄
𝑛+1

+ (∆𝑡)−1u𝑛 в Ω, (3)

divu𝑛+1 = 0 в Ω, (4)

u𝑛+1 = g𝑛+1 на 𝜕Ω. (5)

Схема второго порядка. Эта схема состоит из двух шагов.
Шаг 1. Пусть заданы u𝑛, U𝑛 := 3/2u𝑛−1/2u𝑛−1, f𝑛+𝛾 и g𝑛+𝛾. Найти u𝑛+𝛾 и 𝑃 𝑛+𝛾(𝛾 ∈

(0, 1)) как решения системы уравнений

(𝛾∆𝑡)−1u𝑛+𝛾 −∆u𝑛+𝛾 + rotU𝑛 × u𝑛+𝛾 + grad𝑃 𝑛+𝛾 = f𝑛+𝛾 + (𝛾∆𝑡)−1u𝑛 в Ω, (6)

divu𝑛+𝛾 = 0 в Ω, (7)

u𝑛+𝛾 = g𝑛+𝛾 на 𝜕Ω. (8)

Шаг 2. Пусть заданы u𝑛, u𝑛+𝛾, 𝑃 𝑛+𝛾, U𝑛 := 3/2u𝑛−1/2u𝑛−1, f𝑛+1, f𝑛+𝛾 и g𝑛+1. Найти
u𝑛+1 и 𝑃 𝑛+1 как решения системы уравнений

(∆𝑡)−1u𝑛+1 + 𝛾(−∆u𝑛+1 + rotU𝑛 × u𝑛+1 + grad𝑃 𝑛+1) = (∆𝑡)−1u𝑛 + 𝛾f𝑛+1+

+(1− 𝛾)f𝑛+𝛾 − (1− 𝛾)(−∆u𝑛+𝛾0 + rotU𝑛 × u𝑛+𝛾 + grad𝑃 𝑛+𝛾) в Ω, (9)

divu𝑛+1 = 0 в Ω, (10)

u𝑛+1 = g𝑛+1 на 𝜕Ω. (11)

На каждом шаге обеих схем необходимо уметь решать следующую задачу: найти
векторное v = (𝑣1, 𝑣2) и скалярное 𝑞 поля такие, что

𝜃v −∆v +W × v + grad 𝑞 = F в Ω, (12)

divv = 0 в Ω, (13)

v = G на 𝜕Ω, (14)

где F и W — заданные вектор-функция и функция в Ω соответственно, а G задана на
𝜕Ω, 𝑊 × v = (−𝑊𝑣2,𝑊𝑣1)

𝑇 .
Определим 𝑅𝜈-обобщенное решение задачи (12)–(14) в области Ω, имеющей входя-

щий угол на 𝜕Ω с вершиной в начале координат. Для этого определим необходимые
весовые множества.

Сначала введем понятие весовой функции 𝜌(x): 𝜌(x) = {
√︀
𝑥21 + 𝑥22, если x ∈ Ω𝛿, и 𝛿,

если x ∈ Ω̄⧹Ω𝛿}, где Ω𝛿 = {x ∈ Ω̄ :
√︀
𝑥21 + 𝑥22 ≤ 𝛿} и 𝛿 ≪ 1. Обозначим через 𝐿2,𝛼(Ω, 𝛿)

множество функций 𝑠(x), удовлетворяющих условиям:
1) ‖𝜌𝛼𝑠‖𝐿2(Ω⧹Ω𝛿) ≥ 𝐶1 > 0;
2) |𝑠(x)| ≤ 𝐶2𝛿

𝛼−𝜀𝜌𝜀−𝛼(x), x ∈ Ω𝛿,
где 𝐶2 — положительная константа, не зависящая от 𝑠(x); 𝜀 — малый положительный
параметр, не зависящий от 𝛿, 𝛼, 𝑠(x), с ограниченной нормой ‖𝑠‖𝐿2,𝛼(Ω) := ‖𝜌𝛼𝑠‖𝐿2(Ω)

пространства 𝐿2,𝛼(Ω), 𝐿
0
2,𝛼(Ω, 𝛿) — подмножество 𝐿2,𝛼(Ω) такое, что 𝑠 ∈ 𝐿0

2,𝛼(Ω, 𝛿), если
𝑠 ∈ 𝐿2,𝛼(Ω) и ‖𝜌𝛼𝑠‖𝐿1(Ω) = 0.
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Обозначим через𝑊 1
2,𝛼(Ω, 𝛿) множество функций 𝑠(x), удовлетворяющих условиям:

1) ‖𝜌𝛼𝑠‖𝐿2(Ω⧹Ω𝛿) ≥ 𝐶1 > 0;
2) |𝑠(x)| ≤ 𝐶2𝛿

𝛼−𝜀𝜌𝜀−𝛼(x), x ∈ Ω𝛿;
3) |𝐷1𝑠(x)| ≤ 𝐶2𝛿

𝛼−𝜀𝜌𝜀−𝛼−1(x), x ∈ Ω𝛿, с ограниченной нормой пространства 𝑊 1
2,𝛼(Ω)

‖𝑠‖𝑊 1
2,𝛼(Ω) :=

√︃∑︁
|𝑘|≤1

‖𝜌𝛼|𝐷𝑘𝑠|‖2𝐿2(Ω).

Обозначим через 𝑊̂ 1
2,𝛼(Ω, 𝛿) подмножество 𝑊 1

2,𝛼(Ω) такое, что 𝑠 ∈ 𝑊̂ 1
2,𝛼(Ω, 𝛿), если

𝑠 ∈ 𝑊 1
2,𝛼(Ω, 𝛿), и 𝑠 = 0 на 𝜕Ω. Пусть 𝐿∞,𝛼(Ω, 𝐶3) — множество функций 𝑠(x) с нор-

мой ‖𝑠‖𝐿∞,𝛼(Ω,𝐶3) = vrai max
x∈Ω

|𝜌𝛼(x)𝑠(x)| ≤ 𝐶3, где 𝐶3 > 0 не зависит от функции 𝑠(x).

Будем говорить, что 𝜙(x) ∈ 𝑊
1/2
2,𝛼 (𝜕Ω, 𝛿), если существует функция Φ(x) из 𝑊 1

2,𝛼(Ω, 𝛿)
такая, что Φ(x)|𝜕Ω = 𝜙(x) и ‖𝜙‖

𝑊
1/2
2,𝛼 (𝜕Ω)

= inf
Φ|𝜕Ω=𝜙

‖Φ‖𝑊 1
2,𝛼(Ω).

Определим понятие 𝑅𝜈-обобщенного решения задачи (12)–(14).
Определение 1. Пару (v𝜈 , 𝑞𝜈) ∈ W1

2,𝜈(Ω, 𝛿) × 𝐿0
2,𝜈(Ω, 𝛿) назовем 𝑅𝜈-обобщенным

решением задачи (12)–(14), если v𝜈 удовлетворяет условию (14) на 𝜕Ω и справедливы
тождества

𝑎(v𝜈 , z) + 𝑏(z, 𝑞𝜈) = 𝑙(z), (15)

𝑐(v𝜈 , 𝑠) = 0 (16)

для всех (z, 𝑠) ∈ Ŵ
1

2,𝜈(Ω, 𝛿) × 𝐿0
2,𝜈(Ω, 𝛿). Здесь (F,𝑊,G) ∈ L2,𝛼(Ω, 𝛿) × 𝐿∞,𝛽(Ω, 𝐶3) ×

W
1/2
2,𝛼(𝜕Ω, 𝛿), 𝜈 ≥ 𝛼 ≥ 0, 𝛽 ≤ 2.
Билинейные и линейная формы в (15), (16) определены следующим образом:

𝑎(w, z) =

∫︁
Ω

[︀
𝜃w · (𝜌2𝜈z) +∇w : ∇(𝜌2𝜈z) + (𝑊 ×w) · (𝜌2𝜈z)

]︀
𝑑x,

𝑏(z, 𝑝) = −
∫︁
Ω

𝑝div (𝜌2𝜈z)𝑑x, 𝑐(w, 𝑠) = −
∫︁
Ω

(𝜌2𝜈𝑠)divw𝑑x, 𝑙(z) =

∫︁
Ω

F · (𝜌2𝜈z)𝑑x.

Замечание 1. Поскольку 𝑏(·, ·) ̸= 𝑐(·, ·), вариационная задача (15), (16) не является
симметричной, в отличие от стандартной вариационной задачи (см. [31]).

Замечание 2. Если 𝑊 ∈ 𝐿∞,𝛽(Ω, 𝐶3), 𝛽 ≤ 2, G = 0 на 𝜕Ω, то существует единст-
венное 𝑅𝜈-обобщенное решение (v𝜈 , 𝑞𝜈) задачи (12)–(14) в несимметричной постанов-
ке (15), (16) (см. теорему 5 в [19]).

Замечание 3. Схему 2 (см. (6)–(11)) будем применять, когда параметр 𝛾 равен
1 −

√
2/2 (сильно 𝐿-устойчивая схема [32]). Схему 1 (см. (3)–(5)) можно применить

ввиду доказанной в [19] (см. ниже) теоремы 1.
Теорема 1. Пусть 𝜈 > 0 и u𝑛 — компонента 𝑅𝜈-обобщенного решения в момент

времени 𝑡𝑛, 𝑛 = 1, . . . , 𝑁 . Тогда существует величина 𝛿1 = 𝛿1(𝜈) > 0, что для произ-

вольного 𝛿 ∈ (0, 𝛿1] справедливо неравенство

‖u𝑛‖2L2,𝜈(Ω) +
1

2𝜃

𝑛−1∑︁
𝑙=0

‖∇u𝑛̄−𝑙‖2L2,𝜈(Ω) ≤ 𝑒2‖u0‖2L2,𝜈(Ω) +
4𝑒2𝐶4

𝜃

𝑛−1∑︁
𝑙=0

‖f 𝑛̄−𝑙‖2L2,𝜈(Ω),

𝑛 = 1, . . . , 𝑁 , 𝑛̄ = 𝑛− 1/2, 𝐶4 = 3𝐶2
𝐹 , где 𝐶𝐹 — константа в неравенстве Фридрихса.
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2. Построение весового метода конечных элементов

Построим квазиравномерное разбиение 𝐼ℎ области Ω̄ на треугольники 𝐾𝑖. Треуголь-
ники 𝐾𝑖 со сторонами порядка ℎ являются базовыми элементами. Каждый базовый
элемент разделим на три треугольника с помощью соединения его вершин с центром
масс, полученные треугольники назовем конечными элементами и обозначим через 𝐿𝑖𝑗 ,
которые образуют разбиение 𝐽ℎ.

Определим основные пространства конечных элементов.
1. Для компонент вектора скоростей. Будем использовать лагранжевы элементы

второго порядка с узлами в вершинах и серединах сторон конечных элементов 𝐿𝑖𝑗 .
Линейная оболочка базисных функций 𝜒𝑘(x) образует пространство 𝑊ℎ.

2. Для давления. В качестве узлов аппроксимации будем использовать вершины ко-
нечных элементов. Общие вершины соседних конечных элементов считаем разны-
ми узлами. На каждом треугольнике 𝐿𝑖𝑗 определяем базисные функции первого
порядка 𝜃𝑙(x), носителем которых является только один конечный элемент. Ли-
нейная оболочка таких базисных функций образует пространство 𝑆ℎ, состоящее
из функций, разрывных при переходе от одного конечного элемента к другому,
соседнему с ним.

Пара Wℎ × 𝑆ℎ(Wℎ = 𝑊ℎ × 𝑊ℎ) является парой Скотта –Вогелиуса второго
порядка [33].

Далее базисные функции пространств 𝑊ℎ и 𝑆ℎ умножим на весовую функцию 𝜌(x)
в некоторых степенях (−𝜈*) и (−𝜇*) соответственно. Их значения являются свободными
параметрами метода и будут установлены позднее экспериментально. Определим новые
базисные функции 𝜑𝑘(x) = 𝜒𝑘(x)𝜌

−𝜈*(x), 𝜓𝑙(x) = 𝜃𝑙(x)𝜌
−𝜇*

(x).
Линейные оболочки {𝜑𝑘(x)}dim𝑉ℎ

𝑘=1 , {𝜓𝑙(x)}dim𝑄ℎ

𝑙=1 образуют конечномерные простран-

ства 𝑉ℎ и 𝑄ℎ соответственно. 𝑉ℎ = {𝑢ℎ ∈ 𝑉ℎ : 𝑢ℎ(𝑀𝑖) = 0, где 𝑀𝑖 — узлы на 𝜕Ω}. После
того как найдем решение 𝑣𝑖,𝑘, 𝑘 = 1, 2, и 𝑞𝑗 в узлах 𝑀𝑖 и 𝑁𝑗 для компонент скорости
и давления полученной системы линейных алгебраических уравнений (представлен-
ной ниже), необходимо восстановить истинные значения решения в узлах 𝑀𝑖 и 𝑁𝑗 по
формулам 𝑣𝑖,𝑘 = 𝑣𝑖,𝑘𝜌

−𝜈*(𝑀𝑖) и 𝑞𝑗 = 𝑞𝑗𝜌
−𝜇*

(𝑁𝑗). Имеем Vℎ = 𝑉ℎ × 𝑉ℎ ⊂ W1
2,𝜈(Ω, 𝛿),

V̂ℎ = 𝑉ℎ × 𝑉ℎ ⊂ Ŵ
1

2,𝜈(Ω, 𝛿), 𝑄ℎ ⊂ 𝐿0
2,𝜈(Ω, 𝛿).

У нас есть все необходимое для определения приближенного 𝑅𝜈-обобщенного реше-
ния задачи (12)–(14).

Определение 2. Будем говорить, что пара (vℎ
𝜈 , 𝑞

ℎ
𝜈 ) из пространствVℎ×𝑄ℎ, v

ℎ
𝜈 , удов-

летворяющая условию (14) в узлах на 𝜕Ω, является приближенным 𝑅𝜈-обобщенным ре-
шением задачи (12)–(14), если для всех пар (zℎ, 𝑠ℎ) из пространств V̂ℎ×𝑄ℎ справедливы
следующие соотношения:

𝑎(vℎ
𝜈 , z

ℎ) + 𝑏(zℎ, 𝑞ℎ𝜈 ) = 𝑙(zℎ), (17)

𝑐(vℎ
𝜈 , 𝑠

ℎ) = 0. (18)

Система (17), (18) имеет вид

𝐴y +𝐵z = F, 𝐶𝑇y = 0, (19)

где y = (𝑣0,1, 𝑣1,1, . . . , 𝑣0,2, 𝑣1,2, . . .)
𝑇 ; z = (𝑞0, 𝑞1, . . .)

𝑇 и F — вектор, составленный из
значений линейной формы 𝑙(𝜑𝑘).

Рассмотрим сходящуюся итерационную процедуру решения (19) [34] с блочным пре-
добусловливанием матрицы системы:
1) определим произвольное начальное приближение y0, z0 для (19);
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2) выполним итерации 𝑛 = 0, 1, 2, . . ., далее п. 3 и 4, пока не будет выполнено условие
остановки итерационного процесса;

3) найдем вектор y𝑛+1 = y𝑛 +𝐴−1(F−𝐴y𝑛 −𝐵z𝑛), где 𝐴 есть переобусловливающая
матрица к 𝐴 — неполная 𝐿𝑈 -факторизация 𝐴, т. е. 𝐴 = 𝐿̂𝑈̂ , где 𝐿̂ — нижнетре-
угольная, а 𝑈̂ — верхнетреугольная матрицы. Решаем задачу 𝜁 = 𝐴𝜂 с левым
переобусловливателем, используя GMRES(𝑚)-метод [35]. Пусть g0 = 𝐴−1(𝜁−𝐴𝜂),
процедура Арнольди порождает ортогональный базис в подпространстве Крылова
и 𝛼0g0+𝛼1(𝐴

−1𝐴)1g0+. . .+𝛼𝑚−1(𝐴
−1𝐴)𝑚−1g0 с минимальной невязкой, 𝛼𝑖∈𝑅, 𝑚=5;

4) вычислим вектор z𝑛+1 = z𝑛 + 𝑆−1𝐶𝑇y𝑛+1, где 𝑆 — переобусловливающая матрица
к 𝑆 = 𝐶𝑇𝐴−1𝐵. Сперва строим вспомогательную матрицу 𝑆 к 𝑆 как весовую мат-
рицу масс 𝑀𝜈,𝜇*

пространства для давления, т. е. на каждом конечном элементе
𝐿 : (𝑀𝜈 , 𝜇*)𝑖,𝑗 =

∫︀
𝐿

𝜌2(𝜈−𝜇*)𝜃𝑖(x) · 𝜃𝑗(x)𝑑x, и определяем диагональную матрицу 𝑆:

𝑆 = 𝑀̄𝜈,𝜇*
, где (𝑀̄𝜈,𝜇*

)𝑖𝑖 =
∑︀
𝑘

(𝑀𝜈,𝜇*
)𝑖𝑘. Таким образом, используя перезапускаю-

щийся GMRES(5)-метод: Span{r, (𝑆−1𝑆)1r, , . . . , (𝑆−1𝑆)4r}, где r = 𝑆−1(𝜉−𝑆d𝑘−1)
(более подробно см. [36, 37]), находим вектор e := 𝑆−1𝜉 как решение внутренней
итерационной процедуры:
(i) d0 = 0;
(ii) d𝑘 = d𝑘−1 + 𝑆−1(𝜉 − 𝑆d𝑘−1) (𝑘 = 1, . . . ,𝑀);
(iii) e = d𝑀 .

Замечание 4. Если 𝜈 = 𝜈* = 𝜇* = 0, то имеем приближенное обобщенное решение
(vℎ, 𝑞ℎ) задачи (12)–(14).

3. Результаты численных экспериментов

Проведем ряд численных экспериментов для нахождения приближенного решения за-
дачи (1), (2) как последовательности решений задачи (12)–(14) обеих схем в постанов-
ке (17), (18). Рассмотрим области Ω𝑘, 𝑘 = 1, 2, 3, с входящим углом 𝜔𝑘, где

Ω0 = {(𝑥1, 𝑥2) : −1 < 𝑥1 < 1, 0 < 𝑥2 < 1},
Ω̄1 = Ω̄0 ∪ {(𝑥1, 𝑥2) : −1 ≤ 𝑥1 ≤ 0,−1 ≤ 𝑥2 ≤ 0},
Ω̄2 = Ω̄0 ∪ {(𝑥1, 𝑥2) : −1 ≤ 𝑥1 ≤ 0, 𝑥1 ≤ 𝑥2 ≤ 0},

Ω̄3 = Ω̄0 ∪ {(𝑥1, 𝑥2) : −1 ≤ 𝑥1 ≤ 0, 1/2𝑥1 ≤ 𝑥2 ≤ 0}.

В этих случаях угол 𝜔𝑘 равен (1 + 2−𝑘)𝜋, 𝑘 = 1, 2, 3.
Обозначим через uℎ𝑖

𝜈 и uℎ𝑖 приближенные 𝑅𝜈-обобщенные и обобщенные решения
(поле скорости) задачи (1), (2) соответственно в каждый момент времени. Во втором
случае имеем (𝜈 = 𝜈* = 𝜇* = 0, 𝛿 = 1). В первом случае (𝜈, 𝜈*, 𝜇*, 𝛿) — набор свободных
параметров весового метода конечных элементов.

Точное решение задачи (1), (2) поля скоростей и давления зависит от значения вхо-
дящего угла 𝜔𝑘. При этом в каждый момент времени поле скоростей и давление не
принадлежат пространствам Соболева 𝑊 2

2 (Ω𝑘) и 𝑊
1
2 (Ω𝑘) соответственно и имеют в по-

лярных координатах (𝑟, 𝜃) следующий вид:

𝑢1(𝑟, 𝜃, 𝑡) = 𝑒𝑡(𝑟𝜆𝑘𝜒1(𝜃) + 𝜓1(𝑟, 𝜃)), 𝑢2(𝑟, 𝜃, 𝑡) = 𝑒𝑡(𝑟𝜆𝑘𝜒2(𝜃) + 𝜓2(𝑟, 𝜃)),

𝑃 (𝑟, 𝜃, 𝑡) = 𝑒𝑡𝑟𝜆𝑘−1𝛾(𝜃),
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где 𝜓𝑖(𝑟, 𝜃) — регулярная часть решения 𝑢𝑖(𝑟, 𝜃, 𝑡), т. е. функция, принадлежащая
пространству 𝑊 2

2 (Ω𝑘), а 𝑟𝜆𝑘𝜒𝑖(𝜃) и 𝑟𝜆𝑘−1𝛾(𝜃) — сингулярные части решения компо-
нент полей скорости и давления соответственно. Показатель степени 𝜆𝑘 таков, что он
совпадает с наименьшим вещественным положительным решением уравнения
sin(𝜆𝜔𝑘) + 𝜆 sin𝜔𝑘 = 0. Таким образом, набор (𝜆1, 𝜆2, 𝜆3) принимает следующие при-
ближенные значения (0.5445, 0.6736, 0.8008). Имеем

𝜒1(𝜃) = cos(𝜃)Ξ′
𝑘(𝜃) + (1 + 𝜆𝑘) sin(𝜃)Ξ𝑘(𝜃),

𝜒2(𝜃) = (𝜆𝑘 − 1) cos(𝜃)Ξ𝑘(𝜃) + sin(𝜃)Ξ′
𝑘(𝜃),

𝛾(𝜃) = (𝜆𝑘 − 1)−1(Ξ′′′
𝑘 (𝜃) + (1 + 𝜆𝑘)

2Ξ′
𝑘(𝜃)).

В этих уравнениях Ξ𝑘(𝜃) = [(1+𝜆𝑘)
−1 sin((1+𝜆𝑘)𝜃)− (1−𝜆𝑘)−1 sin((1−𝜆𝑘)𝜃)] cos(𝜆𝑘𝜔𝑘)+

cos((1 − 𝜆𝑘)𝜃) − cos((1 + 𝜆𝑘)𝜃), Ξ
′
𝑘(𝜃) и Ξ′′′

𝑘 (𝜃) есть первая и третья производные по
переменной 𝜃 соответственно.

В тестовых примерах рассмотрим разные шаги по пространственной переменной
ℎ𝑗 = 21−𝑗ℎ, ℎ = 0.025, 𝑗 = 1, 2, 3. Шаг по времени ∆𝑡 = 0.01, 𝑇 = 0.5. Определим
погрешности МКЭ:

– классического 𝐸𝑗(𝐺) = ‖u− uℎ𝑗‖W1
2(Ωℎ𝑗

);

– весового 𝐸𝑖(𝑅𝜈) = ‖u− u
ℎ𝑗
𝜈 ‖W1

2,𝜈(Ωℎ𝑗
), Val𝑗(·) = 𝐸𝑗(·)/𝐸𝑗+1(·), 𝑗 = 1, 2.

Для первой схемы рассмотрим случай

𝜓1(𝑟, 𝜃) = 𝜓2(𝑟, 𝜃) = 0,

т. е. решение содержит только сингулярные компоненты.
Для второй схемы

𝜓1(𝑟, 𝜃) = sin(𝑟 cos(𝜃)) cos(𝑟 cos(𝜃)), 𝜓2(𝑟, 𝜃) = − cos(𝑟 cos(𝜃)) sin(𝑟 sin(𝜃)),

т. е. решение содержит помимо сингулярных еще и регулярные составляющие.
Экспериментально установлено, что оптимальные значения с точки зрения сходимос-

ти достигаются при 𝜇* = 𝜈*, когда они принимают неотрицательное значение. Резуль-
таты при использовании схемы Кранка –Николсон для входящего угла, равного 3𝜋/2,
представлены в таблице. Скорость сходимости приближенного решения весового МКЭ
к точному решению задачи (1), (2) почти в два раза выше по порядку, чем для класси-
ческого МКЭ. Скорость сходимости весового МКЭ не зависит от величины входящего
угла, в то время как сходимость классического МКЭ имеет порядок 𝒪(ℎ𝜆). При этом 𝜆
уменьшается с ростом величины входящего угла 𝜔 от 𝜋 до 2𝜋.

Величины погрешностей классического (𝜈=𝜈*=𝜇*=0, 𝛿=1) и весового (𝜈=1.9, 𝜈*=0.275,
𝛿=0.03165) МКЭ

Error values of classical (𝜈=𝜈*=𝜇*=0, 𝛿=1) and weighted (𝜈=1.9, 𝜈*=0.275, 𝛿=0.03165) FEM

Классический МКЭ Весовой МКЭ
𝑡𝑘 = Δ𝑡 𝑡𝑘 = 0.5𝑇 𝑡𝑘 = 𝑇 𝑡𝑘 = Δ𝑡 𝑡𝑘 = 0.5𝑇 𝑡𝑘 = 𝑇

𝑁 = 80 2.750 · 10−1 3.559 · 10−1 4.564 · 10−1 1.801 · 10−4 2.316 · 10−4 2.997 · 10−4

𝑁 = 160 1.908 · 10−1 2.441 · 10−1 3.131 · 10−1 8.876 · 10−5 1.154 · 10−4 1.500 · 10−4

Val1(·) 1.441 1.458 1.457 2.029 2.007 1.998

𝑁 = 320 1.314 · 10−1 1.675 · 10−1 2.147 · 10−1 4.397 · 10−5 5.733 · 10−5 7.467 · 10−5

Val2(·) 1.452 1.457 1.458 2.018 2.013 2.008
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Основная цель настоящего исследования — определение диапазона выбора
оптимальных параметров подхода в переменных 𝜈 и 𝜈*. Зафиксируем диапазон
𝛿 ∼ ℎ1 : 𝛿 ∈ [0.025, 0.035]. Отметим, что каждый 𝜔𝑘 будет иметь свой диапазон из-
менения значений параметров. Показатель степени 𝜈 положителен, считаем, что он не
больше двух. В тестах шаг изменения по переменной 𝜈* равен 0.01, а по переменной 𝜈
равен 0.025.

Будем считать, что точка (𝜈*, 𝜈) попадает в область выбора оптимальных парамет-
ров численного метода решения задачи (1), (2), если значения погрешности отличаются
не более чем на 5 % от оптимального значения по сходимости в каждый момент времени
для всех ℎ𝑗, 𝑗 = 1, 2, 3. На рисунке показаны области выбора оптимальных параметров
в соответствующих диапазонах для первой схемы при входящих углах 𝜔𝑘, 𝑘 = 1, 2, 3.
При использовании схемы Рунге –Кутты второго порядка результаты схожи по струк-
туре.

Область оптимальных параметров весового МКЭ в переменных (𝜈, 𝜈*), 𝛿 ∈ [0.025, 0.035]
Optimal parameters of the weighted FEM for (𝜈, 𝜈*), 𝛿 ∈ [0.025, 0.035]
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Заключение

Рассмотрено течение ньютоновской жидкости, моделируемое с помощью системы урав-
нений Навье –Стокса в вихревой форме в многоугольной области с угловой сингуляр-
ностью. Дискретизация задачи по времени проведена с помощью метода Рунге –Кутты
первого и второго порядков. Использование схемы Кранка –Николсон первого поряд-
ка основано на полученной оценке, связанной с сохранением энергетического баланса
аппроксимационного поля скоростей. Вариационная постановка задачи имеет несиммет-
ричный вид. Построен весовой метод конечных элементов для приближенного решения
задачи. Представлены результаты серии численных экспериментов в невыпуклых об-
ластях. Получены следующие выводы:

� порядок сходимости приближенного решения к точному решению исходной задачи
в каждый момент времени по весовому МКЭ выше по порядку, чем у классичес-
кого МКЭ (относительно шага сетки ℎ);

� результат достигается без сгущения сетки в окрестности точки сингулярности;
� экспериментально определены области выбора оптимальных параметров метода
для различных значений входящего угла.

В дальнейших исследованиях, основываясь на определении 𝑅𝜈-обобщенного реше-
ния и предложенного весового МКЭ, предполагаем получить теоретические и числен-
ные результаты для других форм нелинейных уравнений Навье –Стокса, таких как
конвективная, кососимметричная, консервативная и др.

Отметим, что классический МКЭ теряет в два раза свой порядок точности для кра-
евой задачи с граничными условиями Дирихле –Неймана на сторонах входящего угла
по сравнению с МКЭ для краевой задачи с граничными условиями Дирихле –Дирихле
и Неймана –Неймана [38]. Предложенный нами подход не теряет свой порядок точно-
сти — это было установлено для задачи теории упругости [39]. В одной из ближайших
работ исследуем весовой МКЭ для рассматриваемой задачи в области с входящим углом
на границе и граничными условиями Дирихле –Неймана на сторонах этого угла.
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Abstract

The purpose of the paper is to experimentally find the domain of optimal parameters of the
constructed numerical method for solving non-stationary Navier – Stokes equations in a polygonal
domain with a corner singularity, i. e. in a domain with reentrant corner on the boundary. Time
discretization is carried out using Runge –Kutta schemes of the 1st and 2nd order. At each moment
of time, the solution of the problem is defined as 𝑅𝜈-generalized one in special sets of weight
spaces. Unlike the classical variational formulation, we obtain a nonsymmetrical one. We use the
2nd order Runge –Kutta scheme in the case of its strong 𝐿-stability or the 1st order scheme due
to the established fact associated with the preservation of the energy balance of the approximation
velocity field for a certain 𝑅𝜈-generalized solution of the problem. A numerical method that does
not reduce the convergence rate of the approximate solution to the exact one at each time instant
without condensing the mesh in the vicinity of the singularity point is proposed. In this case, this
order of convergence does not depend on the value of the reentrant corner and is equal to one relative
to the grid step. Actually, using the classical finite element method and the finite difference method,
the error arising in the vicinity of the reentrant corner extends to the entire computational domain,
even where the solution has the necessary smoothness. As a result, contrary to our approach, the
order of convergence decreases. Moreover, greater value of the reentrant corner leads to the greater
difference between approaches in terms of the approximation order. The proposed method is based
on the introduction of a weight function to some extent in the variational formulation of the problem
and special basis functions in the finite element method.

Keywords: nonlinear Navier – Stokes equations, corner singularity, weighted finite element
method.
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